Inhibition of neural crest migration in Xenopus using antisense slug RNA.
نویسندگان
چکیده
Based primarily on studies in the chick, it has been assumed that the zinc finger transcription factor Slug is required for neural crest migration. In the mouse, however, Slug is not expressed in the premigratory neural crest, which forms normally in Slug -/- animals. To study the role of Slug in Xenopus laevis, we used the injection of XSlug antisense RNA and tissue transplantation. Injection of Slug antisense RNA did not suppress the early expression of the related gene XSnail, but led to reduced expression of both XSlug and XSnail in later stage embryos, whereas the expression of another neural crest marker, XTwist, was not affected. Down-regulation of XSlug and XSnail was associated with the inhibition of neural crest cell migration and the reduction or loss of many neural crest derivatives. In particular, the formation of rostral cartilages was often highly aberrant, whereas the posterior cartilages were less frequently affected. The effects of Slug antisense RNA on neural crest migration and cartilage formation were rescued by the injection of either XSlug or XSnail mRNA. These studies indicate that XSlug is required for neural crest migration, that XSlug and XSnail may be functionally redundant, and that both genes are required to maintain each other's expression in the neural crest development of xenopus laevis.
منابع مشابه
YY1 regulates the neural crest-associated slug gene in Xenopus laevis.
slug gene expression is associated with the specification and migration of neural crest cells in the African clawed frog Xenopus laevis. We provide evidence that the protein Ying-Yang 1 (YY1) regulates the slug gene expression both indirectly and directly, via a YY1 cis-element in the slug promoter, during Xenopus development. The ability of the YY1 to bind this YY1 cis-element was confirmed by...
متن کاملMsx1 and Msx2 have shared essential functions in neural crest but may be dispensable in epidermis and axis formation in Xenopus.
The homeodomain factors Msx1 and Msx2 are expressed in essentially identical patterns in the epidermis and neural crest of Xenopus embryos during neurula stages. Disruption of Msx1 and Msx2 RNA splicing with antisense morpholino oligonucleotides shows that both factors are also required for expression of the neural crest gene Slug. Loss of Msx1 can be compensated by overexpression of Msx2 and v...
متن کاملPeter Pan functions independently of its role in ribosome biogenesis during early eye and craniofacial cartilage development in Xenopus laevis.
The Xenopus oocyte possesses a large maternal store of ribosomes, thereby uncoupling early development from the de novo ribosome biosynthesis required for cell growth. Brix domain-containing proteins, such as Peter Pan (PPan), are essential for eukaryotic ribosome biogenesis. In this study, we demonstrate that PPan is expressed maternally as well as in the eye and cranial neural crest cells (NC...
متن کاملThe complex sequence of inductive events responsible for the generation of the neural crest at the border between the neural plate and the epidermis, triggers a genetic cascade
The neural crest comprises a unique set of cells, which segregates from the dorsal part of the neural tube. Prior to adopting their final fate, these cells migrate through the embryo, and generate a prodigious array of cell types, including neurones and support cells of the peripheral nervous system, pigment cells, smooth muscle, craniofacial cartilage, and bone and fin in amphibians and fish (...
متن کاملThe RNA-binding protein Vg1 RBP is required for cell migration during early neural development.
After mid-blastula transition, populations of cells within the Xenopus embryo become motile. Using antisense morpholino oligonucleotides, we find that Vg1 RBP, an RNA-binding protein implicated in RNA localization in oocytes, is required for the migration of cells forming the roof plate of the neural tube and, subsequently, for neural crest migration. These cells are properly determined but rem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 213 1 شماره
صفحات -
تاریخ انتشار 1999